3.3.38 \(\int \frac {A+B \log (\frac {e (a+b x)}{c+d x})}{(f+g x)^4} \, dx\) [238]

3.3.38.1 Optimal result
3.3.38.2 Mathematica [A] (verified)
3.3.38.3 Rubi [A] (verified)
3.3.38.4 Maple [B] (verified)
3.3.38.5 Fricas [F(-1)]
3.3.38.6 Sympy [F(-1)]
3.3.38.7 Maxima [B] (verification not implemented)
3.3.38.8 Giac [B] (verification not implemented)
3.3.38.9 Mupad [B] (verification not implemented)

3.3.38.1 Optimal result

Integrand size = 27, antiderivative size = 275 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(f+g x)^4} \, dx=-\frac {B (b c-a d)}{6 (b f-a g) (d f-c g) (f+g x)^2}-\frac {B (b c-a d) (2 b d f-b c g-a d g)}{3 (b f-a g)^2 (d f-c g)^2 (f+g x)}+\frac {b^3 B \log (a+b x)}{3 g (b f-a g)^3}-\frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{3 g (f+g x)^3}-\frac {B d^3 \log (c+d x)}{3 g (d f-c g)^3}+\frac {B (b c-a d) \left (a^2 d^2 g^2-a b d g (3 d f-c g)+b^2 \left (3 d^2 f^2-3 c d f g+c^2 g^2\right )\right ) \log (f+g x)}{3 (b f-a g)^3 (d f-c g)^3} \]

output
-1/6*B*(-a*d+b*c)/(-a*g+b*f)/(-c*g+d*f)/(g*x+f)^2-1/3*B*(-a*d+b*c)*(-a*d*g 
-b*c*g+2*b*d*f)/(-a*g+b*f)^2/(-c*g+d*f)^2/(g*x+f)+1/3*b^3*B*ln(b*x+a)/g/(- 
a*g+b*f)^3+1/3*(-A-B*ln(e*(b*x+a)/(d*x+c)))/g/(g*x+f)^3-1/3*B*d^3*ln(d*x+c 
)/g/(-c*g+d*f)^3+1/3*B*(-a*d+b*c)*(a^2*d^2*g^2-a*b*d*g*(-c*g+3*d*f)+b^2*(c 
^2*g^2-3*c*d*f*g+3*d^2*f^2))*ln(g*x+f)/(-a*g+b*f)^3/(-c*g+d*f)^3
 
3.3.38.2 Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 260, normalized size of antiderivative = 0.95 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(f+g x)^4} \, dx=\frac {-\frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(f+g x)^3}+B (b c-a d) \left (-\frac {g}{2 (b f-a g) (d f-c g) (f+g x)^2}+\frac {g (-2 b d f+b c g+a d g)}{(b f-a g)^2 (d f-c g)^2 (f+g x)}+\frac {b^3 \log (a+b x)}{(b c-a d) (b f-a g)^3}+\frac {d^3 \log (c+d x)}{(b c-a d) (-d f+c g)^3}+\frac {g \left (a^2 d^2 g^2+a b d g (-3 d f+c g)+b^2 \left (3 d^2 f^2-3 c d f g+c^2 g^2\right )\right ) \log (f+g x)}{(b f-a g)^3 (d f-c g)^3}\right )}{3 g} \]

input
Integrate[(A + B*Log[(e*(a + b*x))/(c + d*x)])/(f + g*x)^4,x]
 
output
(-((A + B*Log[(e*(a + b*x))/(c + d*x)])/(f + g*x)^3) + B*(b*c - a*d)*(-1/2 
*g/((b*f - a*g)*(d*f - c*g)*(f + g*x)^2) + (g*(-2*b*d*f + b*c*g + a*d*g))/ 
((b*f - a*g)^2*(d*f - c*g)^2*(f + g*x)) + (b^3*Log[a + b*x])/((b*c - a*d)* 
(b*f - a*g)^3) + (d^3*Log[c + d*x])/((b*c - a*d)*(-(d*f) + c*g)^3) + (g*(a 
^2*d^2*g^2 + a*b*d*g*(-3*d*f + c*g) + b^2*(3*d^2*f^2 - 3*c*d*f*g + c^2*g^2 
))*Log[f + g*x])/((b*f - a*g)^3*(d*f - c*g)^3)))/(3*g)
 
3.3.38.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 270, normalized size of antiderivative = 0.98, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2948, 93, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \log \left (\frac {e (a+b x)}{c+d x}\right )+A}{(f+g x)^4} \, dx\)

\(\Big \downarrow \) 2948

\(\displaystyle \frac {B (b c-a d) \int \frac {1}{(a+b x) (c+d x) (f+g x)^3}dx}{3 g}-\frac {B \log \left (\frac {e (a+b x)}{c+d x}\right )+A}{3 g (f+g x)^3}\)

\(\Big \downarrow \) 93

\(\displaystyle \frac {B (b c-a d) \int \left (\frac {b^4}{(b c-a d) (b f-a g)^3 (a+b x)}+\frac {d^4}{(b c-a d) (c g-d f)^3 (c+d x)}+\frac {g^2 \left (\left (3 d^2 f^2-3 c d g f+c^2 g^2\right ) b^2-a d g (3 d f-c g) b+a^2 d^2 g^2\right )}{(b f-a g)^3 (d f-c g)^3 (f+g x)}-\frac {g^2 (-2 b d f+b c g+a d g)}{(b f-a g)^2 (d f-c g)^2 (f+g x)^2}+\frac {g^2}{(b f-a g) (d f-c g) (f+g x)^3}\right )dx}{3 g}-\frac {B \log \left (\frac {e (a+b x)}{c+d x}\right )+A}{3 g (f+g x)^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {B (b c-a d) \left (\frac {g \log (f+g x) \left (a^2 d^2 g^2-a b d g (3 d f-c g)+b^2 \left (c^2 g^2-3 c d f g+3 d^2 f^2\right )\right )}{(b f-a g)^3 (d f-c g)^3}+\frac {b^3 \log (a+b x)}{(b c-a d) (b f-a g)^3}-\frac {d^3 \log (c+d x)}{(b c-a d) (d f-c g)^3}-\frac {g (-a d g-b c g+2 b d f)}{(f+g x) (b f-a g)^2 (d f-c g)^2}-\frac {g}{2 (f+g x)^2 (b f-a g) (d f-c g)}\right )}{3 g}-\frac {B \log \left (\frac {e (a+b x)}{c+d x}\right )+A}{3 g (f+g x)^3}\)

input
Int[(A + B*Log[(e*(a + b*x))/(c + d*x)])/(f + g*x)^4,x]
 
output
-1/3*(A + B*Log[(e*(a + b*x))/(c + d*x)])/(g*(f + g*x)^3) + (B*(b*c - a*d) 
*(-1/2*g/((b*f - a*g)*(d*f - c*g)*(f + g*x)^2) - (g*(2*b*d*f - b*c*g - a*d 
*g))/((b*f - a*g)^2*(d*f - c*g)^2*(f + g*x)) + (b^3*Log[a + b*x])/((b*c - 
a*d)*(b*f - a*g)^3) - (d^3*Log[c + d*x])/((b*c - a*d)*(d*f - c*g)^3) + (g* 
(a^2*d^2*g^2 - a*b*d*g*(3*d*f - c*g) + b^2*(3*d^2*f^2 - 3*c*d*f*g + c^2*g^ 
2))*Log[f + g*x])/((b*f - a*g)^3*(d*f - c*g)^3)))/(3*g)
 

3.3.38.3.1 Defintions of rubi rules used

rule 93
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Int[ExpandIntegrand[(e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; Fre 
eQ[{a, b, c, d, e, f}, x] && IntegerQ[p]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2948
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_ 
)]*(B_.))*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(f + g*x)^(m + 1)*( 
(A + B*Log[e*((a + b*x)^n/(c + d*x)^n)])/(g*(m + 1))), x] - Simp[B*n*((b*c 
- a*d)/(g*(m + 1)))   Int[(f + g*x)^(m + 1)/((a + b*x)*(c + d*x)), x], x] / 
; FreeQ[{a, b, c, d, e, f, g, A, B, m, n}, x] && EqQ[n + mn, 0] && NeQ[b*c 
- a*d, 0] && NeQ[m, -1] &&  !(EqQ[m, -2] && IntegerQ[n])
 
3.3.38.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1503\) vs. \(2(266)=532\).

Time = 3.05 (sec) , antiderivative size = 1504, normalized size of antiderivative = 5.47

method result size
parts \(\text {Expression too large to display}\) \(1504\)
derivativedivides \(\text {Expression too large to display}\) \(1821\)
default \(\text {Expression too large to display}\) \(1821\)
risch \(\text {Expression too large to display}\) \(2293\)
parallelrisch \(\text {Expression too large to display}\) \(2896\)

input
int((A+B*ln(e*(b*x+a)/(d*x+c)))/(g*x+f)^4,x,method=_RETURNVERBOSE)
 
output
-1/3*A/(g*x+f)^3/g-B/d^2*(a*d-b*c)*e*(2*d^3*e*g*(a*d-b*c)/(c*g-d*f)^2*(-1/ 
2/(a*g-b*f)^2/e^2*(1/(c*g-d*f)*ln(c*g*(b*e/d+(a*d-b*c)*e/d/(d*x+c))-d*f*(b 
*e/d+(a*d-b*c)*e/d/(d*x+c))-a*e*g+b*e*f)+e*(a*g-b*f)/(c*g-d*f)/(c*g*(b*e/d 
+(a*d-b*c)*e/d/(d*x+c))-d*f*(b*e/d+(a*d-b*c)*e/d/(d*x+c))-a*e*g+b*e*f))+1/ 
2*ln(b*e/d+(a*d-b*c)*e/d/(d*x+c))*(c*g*(b*e/d+(a*d-b*c)*e/d/(d*x+c))-d*f*( 
b*e/d+(a*d-b*c)*e/d/(d*x+c))-2*a*e*g+2*b*e*f)*(b*e/d+(a*d-b*c)*e/d/(d*x+c) 
)/(c*g*(b*e/d+(a*d-b*c)*e/d/(d*x+c))-d*f*(b*e/d+(a*d-b*c)*e/d/(d*x+c))-a*e 
*g+b*e*f)^2/(a*g-b*f)^2/e^2)+d^2*e^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*g^2/(c*g- 
d*f)^2*(-1/3/(a*g-b*f)/(a^2*g^2-2*a*b*f*g+b^2*f^2)/e^3*(1/2*e^2*(a^2*g^2-2 
*a*b*f*g+b^2*f^2)/(c*g-d*f)/(c*g*(b*e/d+(a*d-b*c)*e/d/(d*x+c))-d*f*(b*e/d+ 
(a*d-b*c)*e/d/(d*x+c))-a*e*g+b*e*f)^2-1/(c*g-d*f)*ln(c*g*(b*e/d+(a*d-b*c)* 
e/d/(d*x+c))-d*f*(b*e/d+(a*d-b*c)*e/d/(d*x+c))-a*e*g+b*e*f)-e*(a*g-b*f)/(c 
*g-d*f)/(c*g*(b*e/d+(a*d-b*c)*e/d/(d*x+c))-d*f*(b*e/d+(a*d-b*c)*e/d/(d*x+c 
))-a*e*g+b*e*f))-1/3*ln(b*e/d+(a*d-b*c)*e/d/(d*x+c))*(3*a^2*e^2*g^2-6*a*b* 
e^2*f*g-3*a*c*e*g^2*(b*e/d+(a*d-b*c)*e/d/(d*x+c))+3*a*d*e*f*g*(b*e/d+(a*d- 
b*c)*e/d/(d*x+c))+3*b^2*e^2*f^2+3*b*c*e*f*g*(b*e/d+(a*d-b*c)*e/d/(d*x+c))- 
3*b*d*e*f^2*(b*e/d+(a*d-b*c)*e/d/(d*x+c))+c^2*g^2*(b*e/d+(a*d-b*c)*e/d/(d* 
x+c))^2-2*c*d*f*g*(b*e/d+(a*d-b*c)*e/d/(d*x+c))^2+d^2*f^2*(b*e/d+(a*d-b*c) 
*e/d/(d*x+c))^2)*(b*e/d+(a*d-b*c)*e/d/(d*x+c))/(c*g*(b*e/d+(a*d-b*c)*e/d/( 
d*x+c))-d*f*(b*e/d+(a*d-b*c)*e/d/(d*x+c))-a*e*g+b*e*f)^3/(a*g-b*f)/(a^2...
 
3.3.38.5 Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(f+g x)^4} \, dx=\text {Timed out} \]

input
integrate((A+B*log(e*(b*x+a)/(d*x+c)))/(g*x+f)^4,x, algorithm="fricas")
 
output
Timed out
 
3.3.38.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(f+g x)^4} \, dx=\text {Timed out} \]

input
integrate((A+B*ln(e*(b*x+a)/(d*x+c)))/(g*x+f)**4,x)
 
output
Timed out
 
3.3.38.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 848 vs. \(2 (263) = 526\).

Time = 0.26 (sec) , antiderivative size = 848, normalized size of antiderivative = 3.08 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(f+g x)^4} \, dx=\frac {1}{6} \, {\left (\frac {2 \, b^{3} \log \left (b x + a\right )}{b^{3} f^{3} g - 3 \, a b^{2} f^{2} g^{2} + 3 \, a^{2} b f g^{3} - a^{3} g^{4}} - \frac {2 \, d^{3} \log \left (d x + c\right )}{d^{3} f^{3} g - 3 \, c d^{2} f^{2} g^{2} + 3 \, c^{2} d f g^{3} - c^{3} g^{4}} + \frac {2 \, {\left (3 \, {\left (b^{3} c d^{2} - a b^{2} d^{3}\right )} f^{2} - 3 \, {\left (b^{3} c^{2} d - a^{2} b d^{3}\right )} f g + {\left (b^{3} c^{3} - a^{3} d^{3}\right )} g^{2}\right )} \log \left (g x + f\right )}{b^{3} d^{3} f^{6} + a^{3} c^{3} g^{6} - 3 \, {\left (b^{3} c d^{2} + a b^{2} d^{3}\right )} f^{5} g + 3 \, {\left (b^{3} c^{2} d + 3 \, a b^{2} c d^{2} + a^{2} b d^{3}\right )} f^{4} g^{2} - {\left (b^{3} c^{3} + 9 \, a b^{2} c^{2} d + 9 \, a^{2} b c d^{2} + a^{3} d^{3}\right )} f^{3} g^{3} + 3 \, {\left (a b^{2} c^{3} + 3 \, a^{2} b c^{2} d + a^{3} c d^{2}\right )} f^{2} g^{4} - 3 \, {\left (a^{2} b c^{3} + a^{3} c^{2} d\right )} f g^{5}} - \frac {5 \, {\left (b^{2} c d - a b d^{2}\right )} f^{2} - 3 \, {\left (b^{2} c^{2} - a^{2} d^{2}\right )} f g + {\left (a b c^{2} - a^{2} c d\right )} g^{2} + 2 \, {\left (2 \, {\left (b^{2} c d - a b d^{2}\right )} f g - {\left (b^{2} c^{2} - a^{2} d^{2}\right )} g^{2}\right )} x}{b^{2} d^{2} f^{6} + a^{2} c^{2} f^{2} g^{4} - 2 \, {\left (b^{2} c d + a b d^{2}\right )} f^{5} g + {\left (b^{2} c^{2} + 4 \, a b c d + a^{2} d^{2}\right )} f^{4} g^{2} - 2 \, {\left (a b c^{2} + a^{2} c d\right )} f^{3} g^{3} + {\left (b^{2} d^{2} f^{4} g^{2} + a^{2} c^{2} g^{6} - 2 \, {\left (b^{2} c d + a b d^{2}\right )} f^{3} g^{3} + {\left (b^{2} c^{2} + 4 \, a b c d + a^{2} d^{2}\right )} f^{2} g^{4} - 2 \, {\left (a b c^{2} + a^{2} c d\right )} f g^{5}\right )} x^{2} + 2 \, {\left (b^{2} d^{2} f^{5} g + a^{2} c^{2} f g^{5} - 2 \, {\left (b^{2} c d + a b d^{2}\right )} f^{4} g^{2} + {\left (b^{2} c^{2} + 4 \, a b c d + a^{2} d^{2}\right )} f^{3} g^{3} - 2 \, {\left (a b c^{2} + a^{2} c d\right )} f^{2} g^{4}\right )} x} - \frac {2 \, \log \left (\frac {b e x}{d x + c} + \frac {a e}{d x + c}\right )}{g^{4} x^{3} + 3 \, f g^{3} x^{2} + 3 \, f^{2} g^{2} x + f^{3} g}\right )} B - \frac {A}{3 \, {\left (g^{4} x^{3} + 3 \, f g^{3} x^{2} + 3 \, f^{2} g^{2} x + f^{3} g\right )}} \]

input
integrate((A+B*log(e*(b*x+a)/(d*x+c)))/(g*x+f)^4,x, algorithm="maxima")
 
output
1/6*(2*b^3*log(b*x + a)/(b^3*f^3*g - 3*a*b^2*f^2*g^2 + 3*a^2*b*f*g^3 - a^3 
*g^4) - 2*d^3*log(d*x + c)/(d^3*f^3*g - 3*c*d^2*f^2*g^2 + 3*c^2*d*f*g^3 - 
c^3*g^4) + 2*(3*(b^3*c*d^2 - a*b^2*d^3)*f^2 - 3*(b^3*c^2*d - a^2*b*d^3)*f* 
g + (b^3*c^3 - a^3*d^3)*g^2)*log(g*x + f)/(b^3*d^3*f^6 + a^3*c^3*g^6 - 3*( 
b^3*c*d^2 + a*b^2*d^3)*f^5*g + 3*(b^3*c^2*d + 3*a*b^2*c*d^2 + a^2*b*d^3)*f 
^4*g^2 - (b^3*c^3 + 9*a*b^2*c^2*d + 9*a^2*b*c*d^2 + a^3*d^3)*f^3*g^3 + 3*( 
a*b^2*c^3 + 3*a^2*b*c^2*d + a^3*c*d^2)*f^2*g^4 - 3*(a^2*b*c^3 + a^3*c^2*d) 
*f*g^5) - (5*(b^2*c*d - a*b*d^2)*f^2 - 3*(b^2*c^2 - a^2*d^2)*f*g + (a*b*c^ 
2 - a^2*c*d)*g^2 + 2*(2*(b^2*c*d - a*b*d^2)*f*g - (b^2*c^2 - a^2*d^2)*g^2) 
*x)/(b^2*d^2*f^6 + a^2*c^2*f^2*g^4 - 2*(b^2*c*d + a*b*d^2)*f^5*g + (b^2*c^ 
2 + 4*a*b*c*d + a^2*d^2)*f^4*g^2 - 2*(a*b*c^2 + a^2*c*d)*f^3*g^3 + (b^2*d^ 
2*f^4*g^2 + a^2*c^2*g^6 - 2*(b^2*c*d + a*b*d^2)*f^3*g^3 + (b^2*c^2 + 4*a*b 
*c*d + a^2*d^2)*f^2*g^4 - 2*(a*b*c^2 + a^2*c*d)*f*g^5)*x^2 + 2*(b^2*d^2*f^ 
5*g + a^2*c^2*f*g^5 - 2*(b^2*c*d + a*b*d^2)*f^4*g^2 + (b^2*c^2 + 4*a*b*c*d 
 + a^2*d^2)*f^3*g^3 - 2*(a*b*c^2 + a^2*c*d)*f^2*g^4)*x) - 2*log(b*e*x/(d*x 
 + c) + a*e/(d*x + c))/(g^4*x^3 + 3*f*g^3*x^2 + 3*f^2*g^2*x + f^3*g))*B - 
1/3*A/(g^4*x^3 + 3*f*g^3*x^2 + 3*f^2*g^2*x + f^3*g)
 
3.3.38.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 9339 vs. \(2 (263) = 526\).

Time = 0.78 (sec) , antiderivative size = 9339, normalized size of antiderivative = 33.96 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(f+g x)^4} \, dx=\text {Too large to display} \]

input
integrate((A+B*log(e*(b*x+a)/(d*x+c)))/(g*x+f)^4,x, algorithm="giac")
 
output
1/6*(2*(3*B*b^4*c^2*d^2*e*f^2 - 6*B*a*b^3*c*d^3*e*f^2 + 3*B*a^2*b^2*d^4*e* 
f^2 - 3*B*b^4*c^3*d*e*f*g + 3*B*a*b^3*c^2*d^2*e*f*g + 3*B*a^2*b^2*c*d^3*e* 
f*g - 3*B*a^3*b*d^4*e*f*g + B*b^4*c^4*e*g^2 - B*a*b^3*c^3*d*e*g^2 - B*a^3* 
b*c*d^3*e*g^2 + B*a^4*d^4*e*g^2)*log(-b*e*f + a*e*g + (b*e*x + a*e)*d*f/(d 
*x + c) - (b*e*x + a*e)*c*g/(d*x + c))/(b^3*d^3*f^6 - 3*b^3*c*d^2*f^5*g - 
3*a*b^2*d^3*f^5*g + 3*b^3*c^2*d*f^4*g^2 + 9*a*b^2*c*d^2*f^4*g^2 + 3*a^2*b* 
d^3*f^4*g^2 - b^3*c^3*f^3*g^3 - 9*a*b^2*c^2*d*f^3*g^3 - 9*a^2*b*c*d^2*f^3* 
g^3 - a^3*d^3*f^3*g^3 + 3*a*b^2*c^3*f^2*g^4 + 9*a^2*b*c^2*d*f^2*g^4 + 3*a^ 
3*c*d^2*f^2*g^4 - 3*a^2*b*c^3*f*g^5 - 3*a^3*c^2*d*f*g^5 + a^3*c^3*g^6) + 2 
*(3*B*b^4*c^2*d^2*e^4*f^2 - 6*B*a*b^3*c*d^3*e^4*f^2 + 3*B*a^2*b^2*d^4*e^4* 
f^2 - 3*B*b^4*c^3*d*e^4*f*g + 3*B*a*b^3*c^2*d^2*e^4*f*g + 3*B*a^2*b^2*c*d^ 
3*e^4*f*g - 3*B*a^3*b*d^4*e^4*f*g + B*b^4*c^4*e^4*g^2 - B*a*b^3*c^3*d*e^4* 
g^2 - B*a^3*b*c*d^3*e^4*g^2 + B*a^4*d^4*e^4*g^2 - 6*(b*e*x + a*e)*B*b^3*c^ 
2*d^3*e^3*f^2/(d*x + c) + 12*(b*e*x + a*e)*B*a*b^2*c*d^4*e^3*f^2/(d*x + c) 
 - 6*(b*e*x + a*e)*B*a^2*b*d^5*e^3*f^2/(d*x + c) + 9*(b*e*x + a*e)*B*b^3*c 
^3*d^2*e^3*f*g/(d*x + c) - 15*(b*e*x + a*e)*B*a*b^2*c^2*d^3*e^3*f*g/(d*x + 
 c) + 3*(b*e*x + a*e)*B*a^2*b*c*d^4*e^3*f*g/(d*x + c) + 3*(b*e*x + a*e)*B* 
a^3*d^5*e^3*f*g/(d*x + c) - 3*(b*e*x + a*e)*B*b^3*c^4*d*e^3*g^2/(d*x + c) 
+ 3*(b*e*x + a*e)*B*a*b^2*c^3*d^2*e^3*g^2/(d*x + c) + 3*(b*e*x + a*e)*B*a^ 
2*b*c^2*d^3*e^3*g^2/(d*x + c) - 3*(b*e*x + a*e)*B*a^3*c*d^4*e^3*g^2/(d*...
 
3.3.38.9 Mupad [B] (verification not implemented)

Time = 7.32 (sec) , antiderivative size = 1154, normalized size of antiderivative = 4.20 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(f+g x)^4} \, dx=\frac {\ln \left (f+g\,x\right )\,\left (g\,\left (3\,B\,a^2\,b\,d^3\,f-3\,B\,b^3\,c^2\,d\,f\right )-g^2\,\left (B\,a^3\,d^3-B\,b^3\,c^3\right )-3\,B\,a\,b^2\,d^3\,f^2+3\,B\,b^3\,c\,d^2\,f^2\right )}{3\,a^3\,c^3\,g^6-9\,a^3\,c^2\,d\,f\,g^5+9\,a^3\,c\,d^2\,f^2\,g^4-3\,a^3\,d^3\,f^3\,g^3-9\,a^2\,b\,c^3\,f\,g^5+27\,a^2\,b\,c^2\,d\,f^2\,g^4-27\,a^2\,b\,c\,d^2\,f^3\,g^3+9\,a^2\,b\,d^3\,f^4\,g^2+9\,a\,b^2\,c^3\,f^2\,g^4-27\,a\,b^2\,c^2\,d\,f^3\,g^3+27\,a\,b^2\,c\,d^2\,f^4\,g^2-9\,a\,b^2\,d^3\,f^5\,g-3\,b^3\,c^3\,f^3\,g^3+9\,b^3\,c^2\,d\,f^4\,g^2-9\,b^3\,c\,d^2\,f^5\,g+3\,b^3\,d^3\,f^6}-\frac {\frac {2\,A\,a^2\,c^2\,g^4+2\,A\,b^2\,d^2\,f^4+2\,A\,a^2\,d^2\,f^2\,g^2+2\,A\,b^2\,c^2\,f^2\,g^2+3\,B\,a^2\,d^2\,f^2\,g^2-3\,B\,b^2\,c^2\,f^2\,g^2-4\,A\,a\,b\,c^2\,f\,g^3-4\,A\,a\,b\,d^2\,f^3\,g+B\,a\,b\,c^2\,f\,g^3-4\,A\,a^2\,c\,d\,f\,g^3-5\,B\,a\,b\,d^2\,f^3\,g-4\,A\,b^2\,c\,d\,f^3\,g-B\,a^2\,c\,d\,f\,g^3+5\,B\,b^2\,c\,d\,f^3\,g+8\,A\,a\,b\,c\,d\,f^2\,g^2}{2\,\left (a^2\,c^2\,g^4-2\,a^2\,c\,d\,f\,g^3+a^2\,d^2\,f^2\,g^2-2\,a\,b\,c^2\,f\,g^3+4\,a\,b\,c\,d\,f^2\,g^2-2\,a\,b\,d^2\,f^3\,g+b^2\,c^2\,f^2\,g^2-2\,b^2\,c\,d\,f^3\,g+b^2\,d^2\,f^4\right )}+\frac {x^2\,\left (B\,a^2\,d^2\,g^4-2\,B\,f\,a\,b\,d^2\,g^3-B\,b^2\,c^2\,g^4+2\,B\,f\,b^2\,c\,d\,g^3\right )}{a^2\,c^2\,g^4-2\,a^2\,c\,d\,f\,g^3+a^2\,d^2\,f^2\,g^2-2\,a\,b\,c^2\,f\,g^3+4\,a\,b\,c\,d\,f^2\,g^2-2\,a\,b\,d^2\,f^3\,g+b^2\,c^2\,f^2\,g^2-2\,b^2\,c\,d\,f^3\,g+b^2\,d^2\,f^4}+\frac {x\,\left (-B\,a^2\,c\,d\,g^4+5\,B\,a^2\,d^2\,f\,g^3+B\,a\,b\,c^2\,g^4-9\,B\,a\,b\,d^2\,f^2\,g^2-5\,B\,b^2\,c^2\,f\,g^3+9\,B\,b^2\,c\,d\,f^2\,g^2\right )}{2\,\left (a^2\,c^2\,g^4-2\,a^2\,c\,d\,f\,g^3+a^2\,d^2\,f^2\,g^2-2\,a\,b\,c^2\,f\,g^3+4\,a\,b\,c\,d\,f^2\,g^2-2\,a\,b\,d^2\,f^3\,g+b^2\,c^2\,f^2\,g^2-2\,b^2\,c\,d\,f^3\,g+b^2\,d^2\,f^4\right )}}{3\,f^3\,g+9\,f^2\,g^2\,x+9\,f\,g^3\,x^2+3\,g^4\,x^3}-\frac {B\,b^3\,\ln \left (a+b\,x\right )}{3\,a^3\,g^4-9\,a^2\,b\,f\,g^3+9\,a\,b^2\,f^2\,g^2-3\,b^3\,f^3\,g}+\frac {B\,d^3\,\ln \left (c+d\,x\right )}{3\,c^3\,g^4-9\,c^2\,d\,f\,g^3+9\,c\,d^2\,f^2\,g^2-3\,d^3\,f^3\,g}-\frac {B\,\ln \left (\frac {e\,\left (a+b\,x\right )}{c+d\,x}\right )}{3\,g\,\left (f^3+3\,f^2\,g\,x+3\,f\,g^2\,x^2+g^3\,x^3\right )} \]

input
int((A + B*log((e*(a + b*x))/(c + d*x)))/(f + g*x)^4,x)
 
output
(log(f + g*x)*(g*(3*B*a^2*b*d^3*f - 3*B*b^3*c^2*d*f) - g^2*(B*a^3*d^3 - B* 
b^3*c^3) - 3*B*a*b^2*d^3*f^2 + 3*B*b^3*c*d^2*f^2))/(3*a^3*c^3*g^6 + 3*b^3* 
d^3*f^6 - 3*a^3*d^3*f^3*g^3 - 3*b^3*c^3*f^3*g^3 - 9*a^2*b*c^3*f*g^5 - 9*a* 
b^2*d^3*f^5*g - 9*a^3*c^2*d*f*g^5 - 9*b^3*c*d^2*f^5*g + 9*a*b^2*c^3*f^2*g^ 
4 + 9*a^2*b*d^3*f^4*g^2 + 9*a^3*c*d^2*f^2*g^4 + 9*b^3*c^2*d*f^4*g^2 + 27*a 
*b^2*c*d^2*f^4*g^2 - 27*a*b^2*c^2*d*f^3*g^3 - 27*a^2*b*c*d^2*f^3*g^3 + 27* 
a^2*b*c^2*d*f^2*g^4) - ((2*A*a^2*c^2*g^4 + 2*A*b^2*d^2*f^4 + 2*A*a^2*d^2*f 
^2*g^2 + 2*A*b^2*c^2*f^2*g^2 + 3*B*a^2*d^2*f^2*g^2 - 3*B*b^2*c^2*f^2*g^2 - 
 4*A*a*b*c^2*f*g^3 - 4*A*a*b*d^2*f^3*g + B*a*b*c^2*f*g^3 - 4*A*a^2*c*d*f*g 
^3 - 5*B*a*b*d^2*f^3*g - 4*A*b^2*c*d*f^3*g - B*a^2*c*d*f*g^3 + 5*B*b^2*c*d 
*f^3*g + 8*A*a*b*c*d*f^2*g^2)/(2*(a^2*c^2*g^4 + b^2*d^2*f^4 + a^2*d^2*f^2* 
g^2 + b^2*c^2*f^2*g^2 - 2*a*b*c^2*f*g^3 - 2*a*b*d^2*f^3*g - 2*a^2*c*d*f*g^ 
3 - 2*b^2*c*d*f^3*g + 4*a*b*c*d*f^2*g^2)) + (x^2*(B*a^2*d^2*g^4 - B*b^2*c^ 
2*g^4 - 2*B*a*b*d^2*f*g^3 + 2*B*b^2*c*d*f*g^3))/(a^2*c^2*g^4 + b^2*d^2*f^4 
 + a^2*d^2*f^2*g^2 + b^2*c^2*f^2*g^2 - 2*a*b*c^2*f*g^3 - 2*a*b*d^2*f^3*g - 
 2*a^2*c*d*f*g^3 - 2*b^2*c*d*f^3*g + 4*a*b*c*d*f^2*g^2) + (x*(5*B*a^2*d^2* 
f*g^3 - 5*B*b^2*c^2*f*g^3 + B*a*b*c^2*g^4 - B*a^2*c*d*g^4 - 9*B*a*b*d^2*f^ 
2*g^2 + 9*B*b^2*c*d*f^2*g^2))/(2*(a^2*c^2*g^4 + b^2*d^2*f^4 + a^2*d^2*f^2* 
g^2 + b^2*c^2*f^2*g^2 - 2*a*b*c^2*f*g^3 - 2*a*b*d^2*f^3*g - 2*a^2*c*d*f*g^ 
3 - 2*b^2*c*d*f^3*g + 4*a*b*c*d*f^2*g^2)))/(3*f^3*g + 3*g^4*x^3 + 9*f^2...